Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract For over 25 yr, the origin of long-duration gamma-ray bursts (lGRBs) has been linked to the collapse of rotating massive stars. However, we have yet to pinpoint the stellar progenitor powering these transients. Moreover, the dominant engine powering the explosions remains open to debate. Observations of both lGRBs, supernovae associated with these GRBs, such as broad-line (BL) stripped-envelope (type Ic) supernovae (hereafter, Ic-BL), supernovae (SNe), and perhaps superluminous SNe, fast blue optical transients, and fast x-ray transients, may provide clues to both engines and progenitors. In this paper, we conduct a detailed study of the tight-binary formation scenario for lGRBs, comparing this scenario to other leading progenitor models. Combining this progenitor scenario with different lGRB engines, we can compare to existing data and make predictions for future observational tests. We find that the combination of the tight-binary progenitor scenario with the black hole accretion disk engine can explain lGRBs, low-luminosity GRBs, ultra-long GRBs, and Ic-BL. We discuss the various progenitor properties required for these different subclasses and note such systems would be future gravitational-wave merger sources. We show that the current literature on other progenitor-engine scenarios cannot explain all of these transient classes with a single origin, motivating additional work. We find that the tight-binary progenitor with a magnetar engine is excluded by existing observations. The observations can be used to constrain the properties of stellar evolution, the nature of the GRB, and the associated SN engines in lGRBs and Ic-BL. We discuss the future observations needed to constrain our understanding of these rare, but powerful, explosions.more » « lessFree, publicly-accessible full text available June 17, 2026
-
ABSTRACT Follow-up observations of neutrino events have been a promising method for identifying sources of very-high-energy cosmic rays. Neutrinos are unambiguous tracers of hadronic interactions and cosmic rays. On 2020 June 15, IceCube detected a neutrino event with an 82.8 per cent probability of being astrophysical in origin. To identify the astrophysical source of the neutrino, we used X-ray tiling observations to identify potential counterpart sources. We performed additional multiwavelength follow-up with NuSTAR and the VLA in order to construct a broadband spectral energy distribution (SED) of the most likely counterpart. From the SED, we calculate an estimate for the neutrinos we expect to detect from the source. While the source does not have a high predicted neutrino flux, it is still a plausible neutrino emitter. It is important to note that the other bright X-ray candidate sources consistent with the neutrino event are also radio-quiet active galactic nuclei. A statistical analysis shows that 1RXS J093117.6+033146 is the most likely counterpart (87.5 per cent) if the neutrino is cosmic in origin and if it is among X-ray detectable sources. This result adds to previous results suggesting a connection between radio-quiet AGN and IceCube neutrino events.more » « lessFree, publicly-accessible full text available July 7, 2026
-
Compact objects across the mass spectrum–from neutron stars to supermassive black holes–are progenitors and/or central engines for some of the most cataclysmic phenomena in the Universe. As such, they are associated with radio emission on a variety of timescales and represent key targets for multi-messenger astronomy. Observations of transients in the radio band can unveil the physics behind their central engines, ejecta, and the properties of their surroundings, crucially complementing information on their progenitors gathered from observations of other messengers (such as gravitational waves and neutrinos). In this contribution, we summarize observational opportunities and challenges ahead in the multi-messenger study of neutron stars and black holes using radio observations. We highlight the specific contribution of current U.S. national radio facilities and discuss expectations for the field focusing on the science that could be enabled by facilities recommended by the 2020 Decadal survey such as the next generation Very Large Array (ngVLA).more » « less
-
The ground-based gravitational wave (GW) detectors LIGO and Virgo have enabled the birth of multi-messenger GW astronomy via the detection of GWs from merging stellar-mass black holes (BHs) and neutron stars (NSs). GW170817, the first binary NS merger detected in GWs and all bands of the electromagnetic spectrum, is an outstanding example of the impact that GW discoveries can have on multi-messenger astronomy. Yet, GW170817 is only one of the many and varied multi-messenger sources that can be unveiled using ground-based GW detectors. In this contribution, we summarize key open questions in the astrophysics of stellar-mass BHs and NSs that can be answered using current and future-generation ground-based GW detectors, and highlight the potential for new multi-messenger discoveries ahead.more » « less
-
ABSTRACT Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultrarelativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT 2019pim, the first spectroscopically confirmed afterglow with no observed high-energy emission to be identified. Serendipitously discovered during follow-up observations of a gravitational-wave trigger and located in a contemporaneous TESS sector, it is hallmarked by a fast-rising ($$t \approx 2$$ h), luminous ($$M_{\rm UV,peak} \approx -24.4$$ mag) optical transient with accompanying luminous X-ray and radio emission. No gamma-ray emission consistent with the time and location of the transient was detected by Fermi-GBM or by Konus, placing constraining limits on an accompanying GRB. We investigate several independent observational aspects of the afterglow in the context of constraints on relativistic motion and find all of them are consistent with an initial Lorentz factor of $$\Gamma _0 \approx$$ 10–30 for the on-axis material, significantly lower than in any well-observed GRB and consistent with the theoretically predicted ‘dirty fireball’ scenario in which the high-energy prompt emission is stifled by pair production. However, we cannot rule out a structured jet model in which only the line-of-sight material was ejected at low-$$\Gamma$$, off-axis from a classical high-$$\Gamma$$ jet core, and an on-axis GRB with below-average gamma-ray efficiency also remains a possibility. This event represents a milestone in orphan afterglow searches, demonstrating that luminous optical afterglows lacking detected GRB counterparts can be identified and spectroscopically confirmed in real time.more » « less
-
Abstract The multimessenger detection of GW170817 showed that binary neutron star (BNS) mergers are progenitors of (at least some) short gamma-ray bursts (GRBs), and that short GRB jets (and their afterglows) can have structures (and observational properties) more complex than predicted by the standard top-hat jet scenario. Indeed, the emission from the structured jet launched in GW170817 peaked in the radio band (centimeter wavelengths) at ≈100 days since merger—a timescale much longer than the typical time span of radio follow-up observations of short GRBs. Moreover, radio searches for a potential late-time radio flare from the fast tail of the neutron-rich debris that powered the kilonova associated with GW170817 (AT 2017gfo) have extended to even longer timescales (years after the merger). In light of this, here we present the results of an observational campaign targeting a sample of seven, years-old GRBs in the Swift/BAT sample with no redshift measurements and no promptly identified X-ray counterpart. Our goal is to assess whether this sample of short GRBs could harbor nearby BNS mergers, searching for the late-time radio emission expected from their ejecta. We found one radio candidate counterpart for one of the GRBs in our sample, GRB 111126A, though an origin related to emission from star formation or from an active galactic nucleus in its host galaxy cannot be excluded without further observations.more » « less
-
Abstract We present optical, radio, and X-ray observations of a rapidly evolving transient SN2019wxt (PS19hgw), discovered during the search for an electromagnetic counterpart to the gravitational-wave (GW) trigger S191213g. Although S191213g was not confirmed as a significant GW event in the off-line analysis of LIGO-Virgo data, SN2019wxt remained an interesting transient due to its peculiar nature. The optical/near-infrared (NIR) light curve of SN2019wxt displayed a double-peaked structure evolving rapidly in a manner analogous to currently known ultrastripped supernovae (USSNe) candidates. This double-peaked structure suggests the presence of an extended envelope around the progenitor, best modeled with two components: (i) early-time shock-cooling emission and (ii) late-time radioactive56Ni decay. We constrain the ejecta mass of SN2019wxt atMej≈ 0.20M⊙, which indicates a significantly stripped progenitor that was possibly in a binary system. We also followed up SN2019wxt with long-term Chandra and Jansky Very Large Array observations spanning ∼260 days. We detected no definitive counterparts at the location of SN2019wxt in these long-term X-ray and radio observational campaigns. We establish the X-ray upper limit at 9.93 × 10−17erg cm−2s−1and detect an excess radio emission from the region of SN2019wxt. However, there is little evidence for SN1993J- or GW170817-like variability of the radio flux over the course of our observations. A substantial host-galaxy contribution to the measured radio flux is likely. The discovery and early-time peak capture of SN2019wxt in optical/NIR observations during EMGW follow-up observations highlight the need for dedicated early, multiband photometric observations to identify USSNe.more » « less
-
Abstract GW170817 is the first binary neutron star (NS) merger detected in gravitational waves (GWs) and photons, and so far remains the only GW event of its class with a definitive electromagnetic counterpart. Radio emission from the structured jet associated with GW170817 has faded below the sensitivity achievable via deep radio observations with the most sensitive radio arrays currently in operation. Hence, we now have the opportunity to probe the radio re-brightening that some models predict, which should emerge at late times from the interaction of the dynamically stripped merger ejecta with the interstellar medium. Here we present the latest results from our deep radio observations of the GW170817 field with the Karl G. Jansky Very Large Array (VLA), 4.5 yr after the merger. Our new data at 3 GHz do not show any compelling evidence for emission in excess to the tail of the jet afterglow (<3.3 μ Jy), confirming our previous results. We thus set new constraints on the dynamical ejecta afterglow models. These constraints favor single-speed ejecta with energies ≲10 50 erg (for an ejecta speed of β 0 = 0.5), or steeper energy–speed distributions of the kilonova ejecta. Our results also suggest larger values of the cold, nonrotating maximum NS mass in equal-mass scenarios. However, without a detection of the dynamical ejecta afterglow, obtaining precise constraints on the NS equation of state remains challenging.more » « less
-
Abstract Gravitational-wave observations by the laser interferometer gravitational-wave observatory (LIGO) and Virgo have provided us a new tool to explore the Universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of LIGO detectors when they reach their best possible sensitivity, called A , given the infrastructure in which they exist and a new generation of observatories that are factor of 10 to 100 times more sensitive (depending on the frequency), in particular a pair of L-shaped cosmic explorer (CE) observatories (one 40 km and one 20 km arm length) in the US and the triangular Einstein telescope with 10 km arms in Europe. We use a set of science metrics derived from the top priorities of several funding agencies to characterize the science capabilities of different networks. The presence of one or two A observatories in a network containing two or one next generation observatories, respectively, will provide good localization capabilities for facilitating multimessenger astronomy (MMA) and precision measurement of the Hubble parameter. Two CE observatories are indispensable for achieving precise localization of binary neutron star events, facilitating detection of electromagnetic counterparts and transforming MMA. Their combined operation is even more important in the detection and localization of high-redshift sources, such as binary neutron stars, beyond the star-formation peak, and primordial black hole mergers, which may occur roughly 100 million years after the Big Bang. The addition of the Einstein Telescope to a network of two CE observatories is critical for accomplishing all the identified science metrics including the nuclear equation of state, cosmological parameters, the growth of black holes through cosmic history, but also make new discoveries such as the presence of dark matter within or around neutron stars and black holes, continuous gravitational waves from rotating neutron stars, transient signals from supernovae, and the production of stellar-mass black holes in the early Universe. For most metrics the triple network of next generation terrestrial observatories are a factor 100 better than what can be accomplished by a network of three A observatories.more » « less
An official website of the United States government
